Categories

EPS Plasma Physics Innovation Prize 2019

By . Published on 25 February 2019 in:
February 2019, , , ,

The EPS Plasma Physics Innovation Prize 2019 for technological, industrial or societal applications of research in plasma physics is awarded jointly to Professor Hana Barankova and Professor Ladislav Bardos, both of the Ångström Laboratory, Uppsala University, Sweden.

Hana Barankova and Ladislav Bardos have contributed significantly to the fundamental understanding, and to novel designs, of hollow cathodes and new processes leading to enhanced performance of functional thin films. Linear Arc Discharge (LAD) and Magnets in Motion (M-M) technologies have been patented, licensed, and adopted by industry. They have contributed significant novel work on environmental protection by the conversion of hazardous gases, and on the reduction of energy consumption in industrial processes  by means of plasma technology.

Among the several non-conventional high-density plasma sources which they invented or developed, the radiofrequency hollow cathode plasma jet (RHCPJ) deserves special mention. Their use of graphite cathodes has opened up new hybrid processes which combine plasma vapour deposition (PVD) and plasma-enhanced chemical vapour deposition (PE CVD). These have led to extremely high deposition rates, up to 2.5 microns per minute, of amorphous carbon coatings that have good adhesion to insulators, without an interlayer.

They have recently developed a new magnetron with a magnetised hollow cathode enhanced target, which can enhance the TiN deposition by 50% compared to the deposition rate of Ti. The resulting stoichiometric coatings exhibit very high micro-hardness (up to 31.4 GPa) and a dense structure comparable with that of HIPIMS films. These findings are of a significant interest for upgrading conventional magnetrons.

They have made significant contributions both in reduced pressure and atmospheric plasma hollow cathodes. They invented the fused hollow cathode (FHC) cold atmospheric plasma source, which has an integrated open structure with flowing gas. Combination of the hollow cathode plasma with the microwave antenna was used in a new hybrid hollow electrode activated discharge source (H-HEADS). International patents have been granted on gas and surface treatment by FHC and on H-HEADS. Both sources have been exploited in many applications, from the surface treatment of heat sensitive substrates to the sintering of powders.

Their work on gas conversion for environment cleaning is noteworthy. Results in NOx + air confirmed that plasma can act as a 100% oxidation catalyst, without any additives and without any further heterogeneous catalyst. The conversion of CO2 to glassy deposits was achieved, thus suggesting a path for CO2 fixation. They performed field experiments at Vattenfall AB Värme and verified the results in the real environment.

Hana Barankova and Ladislav Bardos are also currently working on the use of plasma for hydrogen production in liquids. Results from their novel plasma source design confirm the highly efficient production of a hydrogen rich (65%) synthesis gas, from ethanol-water mixtures. The energy corresponds to 7 kWH per 1 kg of  hydrogen. They continue this applied research, in cooperation with  industry, for the development of a hydrogen-on-demand concept using renewable electric energy. The system can be also used for production of high value chemicals from low value feeds.

Professor Ladislav Bardos
Professor Ladislav Bardos

Professor Hana Barankova
Professor Hana Barankova



Read previous post:
Emmy Noether Distinction Winter 2018: Interview with Chiara Mariotti

On 4 February 2019, the Emmy Noether distinction was presented to Dr. Chiara Mariotti [CM] at CERN. She was interviewed by Luc Bergé [LB], chair of the Equal Opportunities Committee of the EPS.

Close
chemist