Categories

Europe defines astroparticle strategy

By . Published on 22 May 2018 in:
May 2018, News, , , , ,

This article is a republication from the CERN Courier, Volume 58, Number 2, March 2018.

Multi-messenger astronomy, neutrino physics and dark matter are among several topics in astroparticle physics set to take priority in Europe in the coming years, according to a report by the Astroparticle Physics European Consortium (APPEC).

The APPEC strategy for 2017–2026, launched at an event in Brussels on 9 January, is the culmination of two years of consultation with the astroparticle and related communities. It involved some 20 agencies in 16 countries and includes representation from the European Committee for Future Accelerators, CERN and the European Southern Observatory (ESO).

APPEC report
APPEC report

Lying at the intersection of astronomy, particle physics and cosmology, astroparticle physics is well placed to search for signs of physics beyond the standard models of particle physics and cosmology. As a relatively new field, however, European astroparticle physics does not have dedicated intergovernmental organisations such as CERN or ESO to help drive it. In 2001, European scientific agencies founded APPEC to promote cooperation and coordination, and specifically to formulate a strategy for the field.

Building on earlier strategies released in 2008 and 2011, APPEC’s latest roadmap presents 21 recommendations spanning scientific issues, organisational aspects and societal factors such as education and industry, helping Europe to exploit tantalising potential for new discoveries in the field.

The recent detection of gravitational waves from the merger of two neutron stars (CERN Courier December 2017 p16) opens a new line of exploration based on the complementary power of charged cosmic rays, electromagnetic waves, neutrinos and gravitational waves for the study of extreme events such as supernovae, black-hole mergers and the Big Bang itself. “We need to look at cross-fertilisation between these modes to maximise the investment in facilities,” says APPEC chair Antonio Masiero of the INFN and the University of Padova. “This is really going to become big.”

APPEC strongly supports Europe’s next-generation ground-based gravitational interferometer, the Einstein Telescope, and the space-based LISA detector. In the neutrino sector, KM3NeT is being completed for high-energy cosmic neutrinos at its site in Sicily, as well as for precision studies of atmospheric neutrinos at its French site near Toulon. Europe is also heavily involved in the upgrade of the leading cosmic-ray facility the Pierre Auger Observatory in Argentina. Significant R&D work is taking place at CERN’s neutrino platform for the benefit of long- and short-baseline neutrino experiments in Japan and the US (CERN Courier July/August 2016 p21), and Europe is host to several important neutrino experiments. Among them are KATRIN at KIT in Germany, which is about to begin measurements of the neutrino absolute mass scale, and experiments searching for neutrinoless double-beta decay (NDBD) such as GERDA and CUORE at INFN’s Gran Sasso National Laboratory (CERN Courier December 2017 p8).

There are plans to join forces with experiments in the US to build the next generation of NDBD detectors. APPEC has a similar vision for dark matter, aiming to converge next year on plans for an “ultimate” 100-tonne scale detector based on xenon and argon via the DARWIN and Argo projects. APPEC also supports ESA’s Euclid mission, which will establish European leadership in dark-energy research, and encourages continued European participation in the US-led DES and LSST ground-based projects. Following from ESA’s successful Planck mission, APPEC strongly endorses a European-led satellite mission, such as COrE, to map the cosmic-microwave background and the consortium plans to enhance its interactions with its present observers ESO and CERN in areas of mutual interest.

“It is important at this time to put together the human forces,” says Masiero. “APPEC will exercise influence in the European Strategy for Particle Physics, and has a significant role to play in the next European Commission Framework Project, FP9.”

A substantial investment is needed to build the next generation of astroparticle-physics research, the report concedes. According to Masiero, European agencies within APPEC currently invest around €80 million per year in astroparticle-related activities, in addition to funding large research infrastructures. A major effort in Europe is necessary for it to keep its leading position. “Many young people are drawn into science by challenges like dark matter and, together with Europe’s existing research infrastructures in the field, we have a high technological level and are pushing industries to develop new technologies,” continues Masiero. “There are great opportunities ahead in European astroparticle physics.”

• View the full report at www.appec.org.




Read previous post:
Electrons and Positrons Collide for the first time in the SuperKEKB Accelerator

Electrons and positrons accelerated and stored by the SuperKEKB particle accelerator collided for the first time on 26 April 2018 0:38, GMT+09:00 at KEK in Tsukuba, Japan. The Belle II detector, installed at the collision point, recorded events from electron-positron annihilation (matter-antimatter annihilation) of the beam particles, which produced other particles likely including beauty quark and anti-beauty quark pairs as well as other hadronic and Bhabha scattering events (1). These are the first electron-positron collisions at the KEK particle physics laboratory in 8 years; the previous KEKB particle collider ceased its operations in 2010.

Close
chemist